УДК 539.3.

ФУНДАМЕНТАЛЬНЫЕ ЗАДАЧИ ТРИБОФАТИКИ И ИХ ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ В МАШИНОСТРОЕНИИ

© 2011 М.А. Журавков, С.С. Щербаков

Белорусский государственный университет, г. Минск, Беларусь

Поступила в редакцию 10.11.2011

Рассмотрены некоторые основные задачи взаимодействия в трибофатических системах. Приведены результаты расчетов, показывающие влияние объемных (неконтактных) нагрузок на контактное давление. Рассмотрены напряженнодеформированное состояние и состояние поврежденности типичной трибофатической системы.

Ключевые слова: трибофатическая система, пространственное напряженно-деформированное состояние, контактное взаимодействие, неконтактные нагрузки. состояние поврежденности, опасный объем.

Объектами исследования в трибофатике являются механические системы, в которых одновременно реализуется контактное взаимодействие с трением (качения, скольжения) между деформируемыми твердыми телами и неконтактное (объемное) деформирование по крайней мере одного из элементов системы [1-4].

Характерными примерами трибофатических систем являются системы ролик/вал, ролик/кольцо, труба/поток вязкой жидкости. Эти системы представляют собой модели таких практически важных систем, как зубчатые зацепления, колесо/рельс, участок магистрального трубопровода и мн. др. Применительно к трибофатическим системам изучаются как их напряженно-деформированное состояние, так и состояние поврежденности

1. Обобщенная трибофатическая система

В качестве трибофатической системы обычно рассматривается пара элементов (ролик/вал, ролик/кольцо, труба/поток жидкости и т.д.), в которой по крайней мере один из них подвержен действию как контактной, так и неконтактной нагрузок. Здесь рассмотрим систему, состоящую из более чем двух элементов [5,6], и изучим общий случай взаимодействия п тел.

Движение каждого из *n* тел может быть описано следующим образом:

$$\mathbf{r}^{k} = \mathbf{\Xi}^{k} (\mathbf{R}^{k}, t), \quad k = 1..n, \tag{1}$$

где \mathbf{r}^{k} и \mathbf{R}^{k} – векторы, определяющие положение частицы *k*-го тела в пространственной (эйлеровой) и связанной с телом (лагранжевой) системах координат, *t* – время, Ξ^{k} – отображение, связывающее начальную (недеформированную) для момента времени *t*₀ и те-

кущую (деформированную) конфигурации *k*-го тела для момента времени *t*.

К уравнениям, определяющим механическое состояние частицы каждого из элементов систем, добавляют граничные условия первого типа, т.е. если заданы перемещения $\overline{u}_i^{k*}(\mathbf{r}^k)$ на поверхности S_u упругого тела:

$$u_i^k = \overline{u}_i^{k^*} \left(\mathbf{r}^k, t \right) \tag{2}$$

и/или второго типа, если на поверхности тела S_{σ} задано распределение усилий \overline{p} ,

$$\sigma_{ij}^{k} l_{j}^{k} = \overline{p}_{i}^{k} \left(\mathbf{r}^{k}, t \right)$$
(3)

где l_i^k – направляющие косинусы.

Помимо этого могут быть заданы начальные условия

$$\left. u_i^k \right|_{i=0} = u_i^{k0} \,, \tag{4}$$

$$\dot{u}_{i}^{k}\Big|_{t=0} = \dot{u}_{i}^{k0} \,. \tag{5}$$

Взаимодействие *п* движущихся деформируемых тел можно описать с помощью контактных граничных условий, определяемых следующими соотношениями:

$$\begin{aligned} \overline{\mathbf{u}}_{l}(\mathbf{r}^{\prime},t)_{S_{u}^{(lm)}} + \overline{\mathbf{u}}_{m}(\mathbf{r}^{m},t)_{S_{u}^{(lm)}} &= \\ &= \mathbf{f}_{lm}^{(\delta)}(\mathbf{r}^{\prime},\mathbf{r}^{m},t)_{S_{u}^{(lm)}} - \left(\mathbf{r}^{\prime}(t)_{S_{u}^{(lm)}} + \mathbf{r}^{m}(t)_{S_{u}^{(lm)}}\right), \end{aligned} (6) \\ &= \mathbf{L}_{\sigma}\left(\overline{\mathbf{u}}_{l}\Big|_{S_{\sigma}^{(lm)}}\right) - \mathbf{L}_{\sigma}\left(\overline{\mathbf{u}}_{m}\Big|_{S_{\sigma}^{(lm)}}\right) = \\ &= \overline{\mathbf{p}}_{l}\left(\mathbf{r}^{\prime},t\right)_{S_{\sigma}^{(lm)}} + \overline{\mathbf{p}}_{m}(\mathbf{r}^{m},t)_{S_{\sigma}^{(lm)}} = 0, \end{aligned} (7)$$

где $S^{(lm)}$ — поверхность контакта тел l и $m, S^{(lm)}_{\sigma} \subset S^{(lm)}, S^{(lm)}_{u} \subset S^{(lm)},$

 $\overline{\mathbf{p}}_{k} = \{\overline{p}_{1}^{k}, \overline{p}_{2}^{k}, \overline{p}_{3}^{k}\} = \{p_{n}^{k}, p_{\tau}^{k}\}$ и $\overline{\mathbf{u}}_{k} = \{\overline{u}_{1}^{k}, \overline{u}_{2}^{k}, \overline{u}_{3}^{k}\}$ – векторы усилий и перемещений на поверхности *k*-го тела, p_{n}^{k} и p_{τ}^{k} – нормальная и касательная компоненты вектора усилий, $\mathbf{f}_{lm}^{(\delta)}$ – вектор сближения двух

Журавков Михаил Анатольевич, доктор физикоматематических наук, профессор, первый проректор, заведующий кафедрой «Теоретическая и прикладная механика». E-mail: tribo-fatique@sail.ru

Щербаков Сергей Сергеевич, кандидат физикоматематических наук, доцент, доцент кафедры «Теоретическая и прикладная механика», ученый секретарь механикоматематического факультета. E-mail: tribo-fatique@sail.ru

ел, $\overline{\mathbf{L}}_{\sigma} = \{L_{11}, L_{12}, L_{13}\}$ – вектор, компонентами коврого являются интегральные операторы, опреденощие поверхностные усилия. Так, в упругой погановке данные операторы имеют следующий вид:

$$L_{ij}(\mathbf{u}) = \mu(u_{i,j} + u_{i,j}) + \lambda u_{q,q} \delta_{ij}.$$
(8)

где δ_{ij} – дельта Кронекера, μ и λ – постоянные ме.

Если между телами *l* и *m* реализуется случай неэнформного контактного взаимодействия, то конактная поверхность *S*^(*lm*) является изначально неизестной. В этом случае размеры и формы областей энтакта, а также распределение контактных усилий можно найти, воспользовавшись вариационными методами или методом обращения матрицы.

2. Система разрешающих уравнений для двух тел

Анализ сложных трибофатических систем, состоящих из большого числа взаимодействующих элементов, требует построения особой системы разрешающих уравнений. В первом приближении подобная система на примере двух взаимодействующих тел *l* и *m* для случая упругого деформирования может быть записана с использованием аппарата интегральных уравнений [5,6] в следующей символической форме:

$$\begin{cases} \overline{\mathbf{p}}_{l}^{(S)} \\ \overline{\mathbf{u}}_{l}^{(S)} \\ 0 \\ \mathbf{f}_{lm}^{(S)} \\ \overline{\mathbf{p}}_{m}^{(S)} \\ \overline{\mathbf{u}}_{m}^{(S)} \end{cases} = \begin{bmatrix} \overline{\mathbf{L}}_{\sigma}(\mathbf{L}_{u}^{(S)}) & 0 \\ \overline{\mathbf{L}}_{\sigma}(\mathbf{L}_{u}^{(S)}) & -\overline{\mathbf{L}}_{\sigma}(\mathbf{L}_{u}^{(S)}) \\ \overline{\mathbf{L}}_{\sigma}(\mathbf{L}_{u}^{(S)}) & -\overline{\mathbf{L}}_{\sigma}(\mathbf{L}_{u}^{(S)}) \\ \overline{\mathbf{L}}_{\sigma}(\mathbf{L}_{u}^{(S)}) & \overline{\mathbf{L}}_{\sigma}(\mathbf{L}_{u}^{(S)}) \\ 0 & \overline{\mathbf{L}}_{\sigma}(\mathbf{L}_{u}^{(S)}) \\ 0 & \overline{\mathbf{L}}_{\sigma}(\mathbf{L}_{u}^{(S)}) \\ 0 & \overline{\mathbf{L}}_{u}^{(S)} \end{bmatrix} + \begin{cases} \overline{\mathbf{p}}_{l} \\ \overline{\mathbf{p}}_{m} \\ \overline{\mathbf{p}}_{m} \\ 0 & \overline{\mathbf{L}}_{\sigma}(\mathbf{L}_{u}^{(V)}) \\ 0 & \overline{\mathbf{L}}_{\sigma}(\mathbf{L}_{u}^{(V)}) \\ 0 & \overline{\mathbf{L}}_{\sigma}(\mathbf{L}_{u}^{(V)}) \\ 0 & \overline{\mathbf{L}}_{u}^{(V)} \end{bmatrix} \end{cases} \cdot \begin{cases} \mathbf{t}_{l} \\ \mathbf{t}_{m} \\ \mathbf{t}_{m} \end{cases}$$
(9)

 $\mathbf{\overline{p}}_{l} = \{\overline{p}_{1}^{\prime}, \overline{p}_{2}^{\prime}, \overline{p}_{3}^{\prime}\}, \overline{\mathbf{u}}_{l} = \{\overline{u}_{1}^{\prime}, \overline{u}_{2}^{\prime}, \overline{u}_{3}^{\prime}\}$ и $\mathbf{t}_{l} = \{\mathbf{t}_{1}^{\prime}, \mathbf{t}_{2}^{\prime}, \mathbf{t}_{3}^{\prime}\}$ – векторы усилий, перемещений на поверхности и бемных сил внутри *l*-го тела, $\mathbf{L}_{u}^{(S)} = \{L_{1}^{(S,u)}, L_{2}^{(S,u)}, L_{3}^{(S,u)}\}$ и $\mathbf{L}_{u}^{(\nu)} = \{L_{1}^{(\nu,u)}, L_{2}^{(\nu,u)}, L_{3}^{(\nu,u)}\}$ – векторы, состоящие внятегральных операторов для действия поверхностных и объемных сил:

$$L_{i}^{(S,j)}(\phi) = \iint_{S(\xi_{1},\xi_{2})} \phi(\xi_{1},\xi_{2}) G_{i}^{(j,\phi)}(\xi_{1}-x_{1},\xi_{2}-x_{2},x_{3}) d\xi_{1} d\xi_{2} =$$

$$= \iint_{S(\xi)} \phi(\xi) G_{i}^{(j,\phi)}(\xi,\mathbf{x}) dS(\xi),$$

$$L_{i}^{(V,j)}(\phi) = \iint_{V(\xi_{1},\xi_{2},\xi_{3})} \phi(\xi_{1},\xi_{2},\xi_{3}) G_{i}^{(j,\phi)}(\xi_{1}-x_{1},\xi_{2}-x_{2},\xi_{3}-x_{3}) d\xi_{1} d\xi_{2} d\xi_{3} =$$

$$= \iint_{V(\xi)} \phi(\xi) G_{i}^{(j,\phi)}(\xi,\mathbf{x}) dV(\xi),$$
(10)

В операторах (10) и (11) $G_{ij}^{(\sigma,p)}$, $G_{ij}^{(\sigma,q)}$, $G_i^{(u,p)}$,

5^{•.4)} представляют собой соответствующие функна влияния из фундаментальных решений [5] для наупространства при действии на него нормальной прхний индекс p) и касательной к поверхности сил прхний индекс q) в перемещениях (верхний инс u) и напряжениях (верхний индекс σ).

Решение системы (10) заключается в определе**р**,

$$\mathbf{\overline{p}}_{i} = \mathbf{\overline{p}}_{i}^{(r)} + \mathbf{\overline{p}}_{i}^{(f)} = \mathbf{\overline{p}}_{i}^{(S)} + \mathbf{\overline{p}}_{i}^{(lm)} + \mathbf{\overline{p}}_{i}^{(f)},$$
 (12)
где $\mathbf{\overline{p}}_{i}^{(r)} = \mathbf{\overline{p}}_{i}^{(S)} + \mathbf{\overline{p}}_{i}^{(lm)}$ – приложенные (кон

пряжениях, $\overline{\mathbf{p}}_{i}^{(f)}$ – неизвестные «фиктивные» граничные условия в напряжениях, соответствующие приложенным граничным условиям в перемещениях $\overline{\mathbf{u}}_{i}^{(S)}$ и $\overline{\mathbf{u}}_{lm}$.

После расчета на поверхности тела $\overline{\mathbf{p}}_l$ с помощью (9) и (12) напряженно-деформированное состояние в точке $M(x_1, x_2, x_3)$ тела l может быть определено из следующих соотношений для поверхностных и объемных сил

$$u_i' = L_i^{(s,u)}(\overline{\mathbf{p}}_i) + L_i^{(V,u)}(\mathbf{t}_i), \ \sigma_{ij}' = L_{ij}(\mathbf{u}_i').$$
(13)

Аналогичным способом строится система для более чем двух взаимодействующих тел.

3. Расчет взаимодействия двух тел с учетом объемного деформирования

Рассмотрим пример реализации системы (13) в ее более простом варианте (12) для двух тел применительно к исследованию обратного эффекта [1-3]. В качестве объекта исследования возьмем систему ролик/вал, на которую действуют контактная F_N и неконтактная F_b силы (рис. 1,*a*). Данная модель используется, в частности, при износоусталостных испытаниях на контактно-механическую усталость.

Для этой модели будем решать задачу о влиянии величины неконтактной нагрузки на изменение контактного давления.

Из рис. 1,6 видно, что поверхности контактирующих тел являются поверхностями второго порядка и для определения контактного давления можно было бы ограничиться теорией Герца. Однако, поскольку при решении системы (12) более вероятны случаи контакта тел с поверхностями произвольной формы, предпочтительнее пользоваться при расчете контактного давления более общими методами численного моделирования. В нашем расчете будет использоваться метод обращения матрицы, описание которого можно найти, например в [7].

Упругие перемещения соответствующих точек двух поверхностей удовлетворяют соотношению

$$\overline{u}_{z1} + \overline{u}_{z1} + [z_1(x, y) - z_2(x, y)] - \delta =$$

$$= \overline{u}_{z1} + \overline{u}_{z1} + h(x, y) - \delta \begin{cases} = 0, (x, y) \in S, \\ > 0, (x, y) \notin S, \end{cases}$$
(14)

где δ – сближение контактирующих тел, $z_1(x, y)$ и $z_2(x, y)$ – уравнения поверхностей тел, S – область контакта.

Проведем равномерное разбиение плоской области *S* на квадратные элементы, на каждый из которых действует подлежащий определению элемент давления постоянной величины p_{ij} . Сформируем матрицу коэффициентов влияния W_{ijpq} , которая определяет перемещение в точке (x_p, y_q) под действием единичного элемента давления с центром в точке (x_i, y_i) :

$$\overline{u}_{z}^{pq} = -k_{E} \sum W_{ijpq} p_{ij}, \qquad (15)$$

где k_E – коэффициент упругих свойств контактирующих тел.

В свою очередь, контактная сила *F_N* связана с узловыми значениями элементов давления формулой

$$F_N = -k_S \sum_{ij} p_{ij}, \qquad (16)$$

где k_S – коэффициент, определяемый формой и размерами элементов давления.

Подставляя (15) в (14), получим

$$\sum_{ij} W_{ijpq} p_{ij} = \frac{1}{k_E} (h_{pq} - \delta).$$
 (17)

Задавая сближение тел δ , имеем значения неизвестных p_{ij} , умножив обе части уравнения (17) на \mathbf{W}^{-1} .

Если задана контактная нагрузка F_N , а δ неизвестно, то (17) решается совместно с (16).

В системе ролик/вал реализуется случай неконформного контакта, поэтому в первом решении системы (17) в окрестности границ контактной области могут появиться точки, где $p_{ij} < 0$. Это означает что для поддержания контакта на всей расчетно области в таких точках сетки необходимо приложить растягивающие усилия.

Данные элементы разбиения исключаются и предполагаемой области контакта (давления в ни полагаются равными нулю) и уравнение (17) решается для обновленной сетки. Описанный процесс повторяется до тех пор, пока на некотором шаге полученные *p*₁₁ становятся неотрицательными.

Численное моделирование контактного взаимо действия двух тел проводилось при следующих па раметрах: $v_1 = v_2 = 0.3$, $E_1 = E_2 = 2.01 \cdot 10^{11}$ Па $R_{11} = 0.005$ м, $R_{12} = 0.05$ м, $R_{21} = 0.01$ м, $R_{22} = -0.01$ (см. рис. 1.6).

Контактная нагрузка задавалась а) сило $F_N = 2000$ Н и б) сближением $\delta = 2,723 \cdot 10^{-5}$ м, соо ветствующим по теории Герца указанному значнию F_N . Соотношение полуосей эллипса контак a/b=0.89. Размеры расчетной области: $1,5a \le x, y \le 1,5a$, где $a = 5,296 \cdot 10^{-4}$ м. Область рабивалась на 21×21 квадратных элементов.

Полученное в результате итерационного решен системы (17) распределение контактного давлен (рис. 2) сравнивали с аналитическим решением Герцу для эллиптического распределения вида. П грешности оценивались по следующим формулам:

$$\varepsilon_{i} = \frac{p_{i}^{H} - p_{i}}{p_{0}^{H}}, \qquad (18)$$

$$ax = \max_{i} \left| \varepsilon_{i} \right|, \varepsilon_{ovg} = \frac{1}{n} \sum_{i=1}^{n} \left| \varepsilon_{i} \right|,$$

где верхний индекс Н означает решение по Герцу.

E_n

Из рис. 2,6 и 3 видно, что при контактной нагрузке, заданной F_N на краях области контакта, погрешность численного моделирования наибольшая. При контактной нагрузке, заданной δ , распределение погрешности практически не отличается от представленного на рис. 3.

Кроме контактной нагрузки, которую будем задавать сближением $\delta = 2,723 \cdot 10^{-5}$ м, к валу также будем прикладывать растягивающую (сжимающую) или изгибающую нагрузку.

Перемещения области контакта в результате действия *F_b* имеют вид:

$$\overline{u}_{z}^{(b)} = \int \varepsilon_{xx}^{(b)} dz. \tag{19}$$

Рис. 2. Распределение контактного давления, отнесенного к $p_0 = 3,844 \cdot 10^9$ Па а) по области контакта, б) вдоль оси x в сравнении с аналитическим решением (сплошная кривая)

Рис. 3. Распределение погрешности ε_i по области несогласованного контакта

Из табл. 1 видно, что погрешности при контактной нагрузке, заданной F_N , незначительно меньше, чем при заданной δ .

Таблица 1. Интегральные показатели погрешности

Вид погрешности	Вид контактного нагружения	
	$\overline{F_N}$	δ
£max	4,929.10-2	5,9.10-2
£ _{avg}	3,871.10-3	4.10-3

В системе координат, показанной на рис. 1, б, перемещения (15) при растяжении-сжатии составляют

$$\overline{u}_{z}^{(b1)} = -\frac{v_{2}}{E_{2}}\sigma_{xx}^{(b1)}R_{2}, \qquad (20)$$

а при изгибе

$$\overline{u}_{z}^{(b2)} = -\frac{v_{2}}{2E_{2}}\sigma_{xx}^{(b2)}R_{2}.$$
 (21)

Из рис. 4, а видно, что максимальное контактное давление p_0 , отнесенное к $p_0^{(c)} = 3,844 \cdot 10^9$ Па, в зависимости от неконтактных напряжений в центре $\sigma_a^{(max)}$ отнесенных к области контакта σa, = 6,4·10⁸ Па, изменяется примерно от +17% до -20% при растяжении-сжатии и примерно от +9% до -9% при изгибе. Из рис. 4,6 следует, что контактная сила F_N , отнесенная к $F_N^{(c)} = 2000$ H, в зависимости от неконтактных напряжений в центре области контакта σ_a , отнесенных к $\sigma_a^{(max)} = 6,4.10^8 \Pi a$, изменяется примерно от +60% до -50% при растяжении-сжатии и примерно от +27% до -25% при изгибе.Из рис. 5 видно, что при испытаниях на контактномеханическую усталость изменение коэффициента сопротивления качению несколько больше в зоне сжатия, чем в зоне растяжения. Это в качественном отношении соответствует результатам приведенных расчетов (см. рис. 4 и 5). Рассмотрим результаты численного расчета пространственного напряженнодеформированного состояния [2, 3, 8, 9] системы ролик/вал в соответствии с выражением (6). Из распределений, представленных на рис. 6, хорошо видно, что напряженно-деформированное состояние трибофатической системы значительно отличается (качественно и количественно) от таковых при традиционно отдельно изучаемых контакте и изгибе.

Рис. 4. Зависимость а) максимального контактного давления б) контактной нагрузки от уровня неконтактных напряжений

Рис. 6. Распределение напряжений: $a - \sigma_{xx}^{(n)}$; $\delta - \sigma_{xx}^{(b)}$; $s - \sigma_{xx}^{(n)} + \sigma_{xx}^{(b)}$ (Q > 0); $z - \sigma_{xx}^{(n)} - \sigma_{xx}^{(b)}$ (Q < 0) (d), отнесенных к максимальному p_0 , в окрестности площадки контакта (y = 0, a/b = 0.5)

4. Состояние поврежденности

Состояние поврежденности при контактном взаимодействии будем оценивать с помощью октаэдрирческого опасного объема [9]

$$V_{\text{int}} = \left\{ dV / \sigma_{\text{int}} \ge \sigma_{\text{int}}^{(*\text{lim})}, dV \subset V_k \right\} \quad (22)$$

в качестве интегральной характеристики поврежденности и относительной величины интенсивности напряжений

$$g_{\rm int} = \sigma_{\rm int} / \sigma_{\rm int}^{(*\,\rm lim)}$$
(23)

для анализа локальных повреждений внутри опасного объема.

Максимальное давление в центре контакта и максимальная интенсивность напряжений при b/a = 0,5 связаны следующим соотношением

$$\sigma_{\text{int}}^{(n,\max)} = 0.62\sigma_{zz}^{(n)}\Big|_{x=0,y=0,z=0} = 0.62p_0 \qquad (24)$$

Тогда для предела контактной усталости

$$p_{f\min} = p_0 \left(F_N^{(*\lim)} \right) \tag{25}$$

предельная интенсивность напряжений будет

$$\sigma_{\rm int}^{(*\rm lim)} = 0.62 p_{f\rm min}$$
 (26)

На рис. 7, 8 показаны опасные объемы и поврежденность для $\sigma_{int}^{(*lim)} = 0,3 p_0$ при действии только нормальной контактной нагрузки p(x, y) (рис. 7) и совместном действии нормальной и касательной $q^{(||a)}(x, y) = fp_0(x, y)$ (рис. 8) контактных нагрузок.

Рис. 7. Опасный объем $V_{int}^{(n)}$ и распределение локальных повреждений в его сечениях

Кроме того, на рис. 7, 8 приведены значен средней поврежденности опасного объема, вычи ляемые по следующей формуле:

$$\Psi_{\rm int} = \int_{g_{\rm int} \ge 1} g_{\rm int} dV \,. \tag{27}$$

Из рис. 8 видно, что в направлении действия каса тельных усилий видны характерные изменени формы октаэдрического опасного объема по сравнению со случаем чистого контакта (рис. 7).

Также видно, что наибольший опасный объем и средняя поврежденность формируются при одновременном действии нормальных p(x,y) и касательных $q^{(||a|)}(x, y)$ усилий.

На рис. 9, 10 показаны опасные объемы и поврежденность в вале для $\sigma_{int}^{(*lim)}$ при совместном действии нормальной контактной нагрузки p(x, y) и неконтактной изгибающей силы F_b .

Из данных рисунков видно изменение формы и величины V_{int} вследствие действия неконтактной силы по сравнению со случаем чистого контакта (рис. 7).

Из сравнения рисунков рис. 9, 10 видно, что в области растяжения (рис. 9) окрестности контакта силой F_b поврежденность будет наибольшей.

5. Заключение

Представлены решения задачи определения механических состояний трибофатических систем, с учетом контактного взаимодействия элементов системы и действия неконтактной нагрузки.

Построена система интегральных уравнений для системы твердых тел, к которым приложены смешанные граничные условия. Решение предложенной системы уравнений для поверхностей, взаимодействующих тел (т.е. определение граничных условий) позволяют моделировать обратный эффект в трибофатике, а решение для внутренней области тела – прямой.

Приведено решение задачи о состоянии поврежденности трибофатической системы, которое построено на базе представления об объемной мере поврежденности, называемой опасным объемом.

Рис. 10. Опасный объем $V_{int}^{(n-b_1)}$ и распределение локальных повреждений в его сечениях

.1

1.5

0

2,5

v/0

Ī

2.5

-0,5 0 0,5

-1

Показано, что как напряженно-деформированное состояние, так и состояние поврежденности может значительно изменяться при одновременном действии контактных и неконтактных нагрузок.

Данные изменения предоставляют возможность управления поврежденностью, а, следовательно, и долговечностью трибофатических систем, соотношением нагрузок различной природы.

СПИСОК ЛИТЕРАТУРЫ

- 1. Сосновский Л.А. Основы трибофатики. Гомель: БелГУТ, 2003. Т. 1. 246 с.; Т. 2. 234с.
- Sosnovskiy L.A. Tribo-Fatigue. Wear-fatigue damage and its prediction (Foundations of engineering mechanics). Springer, 2004. 424 pp.
- Сосновский Л.А. Механика износоусталостного повреждения. Гомель: БелГУТ, 2007. 434 с.
- 4. Математическое моделирование в трибофатике / М.А. Журавков, Л.А. Сосновский, С.С. Щербаков // Х Белорусская математическая конференция: Тез. Докл. Междунар. науч. конф. Минск, 3-7 ноября 2008 г. Часть 2. Мн.: институт математики НАН Беларуси, 2008. С. 120-121.
- 5. Бенерджи П., Баттерфилд Р. "Методы граничных элементов в прикладных науках," М., Мир, 1984. 494 с
- Журавков М.А. Математическое моделирование деформационных процессов в твердых деформируемых средах (на примере задач механики горных пород и массивов): курс лекций. Минск: БГУ, 2002. 456 с.

- Джонсон К. Механика контактного взаимодействия. М Мир, 1989. – 510 с.
- Щербаков С.С. Исследование напряженного состояни силовой системы для испытаний на контактно-механическую усталость / Динаміка, міцність і надійністи сільскогосподарськіх машин: тр. І Междунар. науч.-техи конф., Тернополь, Украина, 4–7 октября 2004 г. С. 400-407.
- Sosnovskiy L.A., Sherbakov S.S. Vibro-impact in rolling contact // Journal of Sound and Vibration. 2007. Vol. 308, Issues 3-5, C. 489–503.
- Журавков, М.А., Щербаков С.С. Расчет опасных объемов при контактном нагружении // Вестн. БГУ. Сер. 1. 2007. № 1. С. 117–122.
- Журавков М.А., Щербаков С.С. Исследование опасные объемов при решении контактной задачи для системы ролик/кольцо // Тр. V Междунар. симпозиума по трибофатике (ISTF 2005), Иркутск, Россия, 3–7 октября 2005 г. Т. 1. С. 375–390.
- Трощенко В.Т. Сопротивление усталости металлов сплавов: справочник в 2 т. / В.Т. Трощенко, Л. А. Сосновский. Киев: Наукова думка, 1987. Т. 1. 508 с.
- Сосновский, Л.А. Статистическая механика усталостного разрушения. Минск: Наука и техника, 1987. 288 с.

FUNDAMENTAL AND APPLIED PROBLEMS OF TRIBO-FATIGUE AND THEIR PRACTICAL APPLICATIONS IN MACHINE BUILDING

© 2011 M.A. Zhuravkov, S.S. Sherbakov

Belarusian State University, Minsk, Belarus

Main some problems of interaction in tribo-fatigue systems are considered. The results of calculations showing influence of volume (non-contact) loads on contact pressure are presented. Stress-strain state and state of damage of typical tribo-fatigue system are considered.

Key words: tribo-fatigue system, spatial stress-strain state, contact interaction, non-contact loads, state of damage, dangerous volume.

Michail Zhuravkov, Doctor of Physics and Mathematics, Professor, First Pro-Rector, Head at the Theoretical and Applied Mechanics Department. E-mail: tribo-fatique@sail.ru Sergei Sherbakov, Candidate of Technics, Associate Professor at the Theoretical and Applied Mechanics Department, Scientific Secretary of mehanical and mathematical faculty. E-mail: tribo-fatique@sail.ru